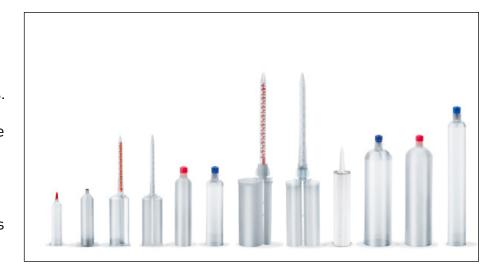


Thermal Interface Material Dispensing Guide

For Thermally Conductive GELs, Cure-in-Place Potting Compounds and Greases

Thermal Interface Material Dispensing Guide



Parker Chomerics thermally conductive dispensable products are an ideal solution for today's electronic packages. Thermally conductive, dispensable materials have the ability to cover a variety of gaps and form complex geometries. This ability to conform provides reduced thermal contact resistances and thus reduces the temperature and increases efficiency of the electronic application, while being low closure force. When using dispensable products, factors such as pump equipment, mating surfaces, tolerance stack up, closure force, and physical application of the material have to be considered.

There are many options for dispensing equipment. ranging from manual syringes, to high volume automated dispensing systems. The choice of the proper equipment will depend on several factors. including volume, labor/ equipment cost, precision requirements, and material

type to be dispensed. When choosing the appropriate dispensing equipment, designers should keep in mind how the equipment may interact with the material. The material and the delivery system need to be compatible to optimize equipment life and maintain material properties.

To achieve high thermal conductivity, these materials are highly filled with ceramic particles. Due to this high loading, the thermal compounds have higher viscosity and may be abrasive. Therefore, they will dispense differently than common low viscosity grease or adhesive. Once the proper equipment

is chosen, certain factors should be considered to increase the quality and through-put of the material. These factors may include needle/nozzle height, dispensing pattern, dispensing speed, needle diameter, substrate surface finish etc.

The intent of this guide is to aid in the appropriate choice of Chomerics' thermally conductive dispensable materials, equipment and dispense process.

Overview of Dispensable Materials

THERM-A-GAP™ GELS T630, T630G, T635, T636, T652, GEL8010, GEL30, & GEL30G

THERM-A-GAP™ GELs are high performance, fully cured, dispensable, thermal materials. Their one-component, crosslinked structure, provides superior performance and longterm thermal stability with very low closure forces.

These GELS are highly conformable and provide low

thermal impedance like greases, but are designed to overcome the pump-out and dry-out issues associated with grease. THERM-A-GAP GELs are designed to be dispensed in applications requiring low compression forces and minimal thermal resistance for maximum thermal performance. They are ideal for filling variable thickness gaps in a single application.

Features / Benefits **Fully Cured**

- Requires no refrigeration, mixing, or additional curing
- Proven long-term reliability and superior performance
- No settling occurs in storage

Highly Conformable At Low Pressures

- Ideal for multiple thickness gaps under one common heat sink
- Applies very low stress on components, which makes it ideal for delicate applications
- Allows for design flexibility compared to thermal pads

One Component Dispensable

- Eliminates hand assembly
- Decreases installation cost • Eliminates multiple pad part sizes/ numbers

Excellent Surface Wetting

• Excellent for maintaining contact through thermal cycling

Typical Applications

- Automotive electronic control units (ECUs): Engine, Transmission, and Braking/Traction controls
- Power conversion equipment
- Power supplies and uninterruptable power supplies
- Power semiconductors
- MOSFET arrays with common heat
- Televisions and consumer electronics

Storage Conditions

Materials should be stored at 50-90°F at 50% relative humidity.

Overview of Dispensable Materials

THERM-A-FORM™ CURE-IN-PLACE COMPOUNDS T642, T644, T646, T647, 1641, & 1642

THERM-A-FORM™ dispensable compounds designed for heat without excessive cooling applications.

temperature vulcanizing) liquid degassing procedures.

(Cure-In- materials can be dispensed Place) compounds are thermally and then cured into complex conductive silicone elastomer geometries for cooling of multi-height components on a PCB without the expense of a molded sheet. Each compound compressive force in electronics is available in ready-to-use cartridge systems,

These versatile RTV (room eliminating weighing, mixing, and

Features and Benefits

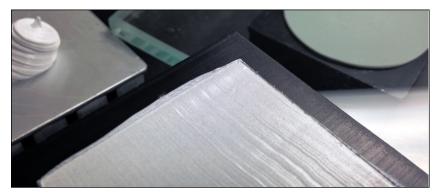
Cure-In-Place Dispensable Compound

- Filling, potting, overfill, under fill, sealing, and encapsulating
- Flows around complex parts
- Ideal for multiple thickness gaps under one common heat sink
- Can cure at elevated heat cycle or at room temperature
- Localized encapsulating of components
- Ceramic particles act as natural standoffs for electrical isolation
- Room temperature and elevated cure available

Conformable (Low Modulus)

- Mold to complex irregular shapes without excessive force on compo-
- Insulates against shock and vibration

Typical Applications


- Power conversion equipment
- Power supplies and uninterruptablepower supplies
- LED Modules & Power
- Telecom Base Stations

Storage Conditions

To maintain uniformity tubes/cartridges should be stored horizontally. Remixing prior to dispensing is not advised, unless the material can be vacuum degassed, to remove any air bubbles. They should be stored at 50-90°F at 50% relative humidity.

Overview of Dispensable Materials

Other Dispensable Thermally Conductive Compounds T650, T660, & T670

The materials that fall in to this category are formulated using viscous silicone oil and are loaded with thermally conductive fillers. They are excellent for conforming to surface micro-voids created by machining/casting to reduce thermal impedance.

Greases and other dispensable

thermal compounds have excellent surface wetting characteristics and flow easily to fill up voids at the interfaces resulting in low thermal impedance even at low pressure. They are ideal materials for stenciling and screening similar to the method depicted below.

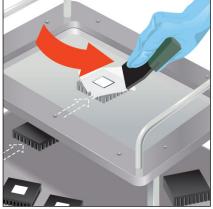


Figure 1: Stenciling Typical application method is to stencil the compound on to the chip or heat-sink. Application patterns can vary depending on the area of coverage. The image above depicts a typical square grease pattern being applied onto a heat-sink with a squeegee or spatula.

Features and Benefits

Highly Conformable

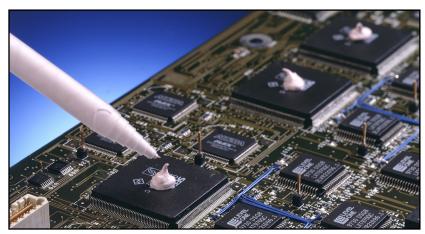
- Low thermal impedance
- Deflects under minimal compressive forces
- Great surface wetting
- Excellent ability to fill microvoids

One Component

- Excellent for screening and stenciling
- Requires no cure cycle

Typical Applications

- LED Modules
- Microprocessors (Mobile Servers & Desktops)
- Memory Modules
- DC/DC Converters
- Power Semiconductors
- Telecom Base Stations


Storage Conditions

Material may settle overtime in storage. Best practice is to remix the material prior to use. Materials should be stored at 50-90°F at 50% relative humidity.

Material Selection

Choosing a Thermal Interface Material (TIM) and Dispensing Method

When designing in a dispensable Temperature and TIM, there are several considerations to keep in mind when determining the appropriate product. The main purpose of the material is to conduct heat, but with a dispensable TIM there is more to the selection process than simply evaluating thermal conductivities.

Environment

material for the application, there has to be an understanding must be dissipated, as well and limits. Occasionally there are substrates that limit the temperatures that be used for

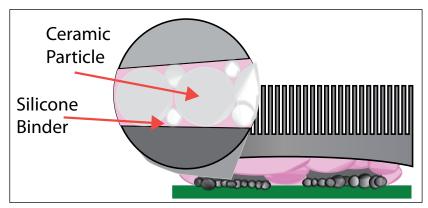


Figure 2: Electrical Isolation Typical Ceramic particles shown as natural mechanical stand-offs for electrical isolation

curing a CIP. Other applications (automotive, under the hood) may present high vibration exposure or extreme temperature cycling that would restrict the type of material that can be used. For example, a GEL material may be selected over a CIP material in applications with extreme thermal shock and vibration because of their inherent tack and elasticity.

Mechanical

The nominal gap and expected variation in gap will dictate the amount, or thickness of TIM material required. Forces generated by expansion/ To choose the appropriate contraction or vibration, coupled material hardness, will result in stress on components. Selection of the heat generation that of a soft, conformable material with appropriate thickness will as environmental conditions minimize potential damage to critical components.

Dielectric Strength

Chomerics thermal interface materials are comprised of resins and ceramic fillers that are inherently electrically isolating. The largest filler particles will dictate the minimum gap that can be achieved to prevent direct contact of electrical component to heat-spreader.

Package Size

Chomerics offers a variety of packaging formats and sizes. Selection of the appropriate format will be a function of throughput, shot size, and expected change over-time as well as compatibility with dispensing equipment. Custom packaging is available upon request.

Equipment Types

Table 1: Low Volume Dispensing Methods

	Jar or Container	Manual Har	nd Dispensing	C	Cartridge Caulking	Shot Size Controllers		
		Single Component Syringe	MixPac™ with Static Mixer	Manual	Battery Powered	Air or Pneumatic	Pressure /Time	Positive Displacement
Features & Benefits	No Capital, Immedi	ate Installations, Small	& Portable, Versatile with	h Tip Attachment,	No Purging Required	No Capital, Small & Portable, Ergonomi- cally Preferred	Repeatable Shot Size, No Purging, Versatile Tip Geometry	Precision Shot Size Control, No Purging, Versatile Tip Geometry, Improved Bead Termination
Operator Responsibility	Dispensed Size, Cycle-Time, Location & Shape		Time, Pressure, Location Shape	Dispensed Size, Cycle-Time, Pressure, Loca- tion & Shape	Dispensed Size, Cycle-Time, Location & Shape	Dispensed Size, Location & Shape	Location & Shape	Location & Shape
Variability in Dispensed Part	S	ize, Shape, Rate & Loc	ation	Size, Shape, Rate & Location	Size, Shape & Location Size, Shape & Location		Location & Shape	Location & Shape
Chomerics Ma- terial Package Description	1.4cc & 120cc (1Pint with vial)	1-10cc Syringe	10:1 35-250cc 1:1 45-200cc Cartridge with Static Mixer	300cc Aluminum Cartridge		30-360cc Cartridge	30-360cc Cartridge	30-360cc Cartridge
Material Cost	LARGER BULK CONTAINERS ARE THE MOST ECONOMICAL PRICE PER CC							
Common Equipment Vendors	None	None	Sulzer MixPac	Albion, *SEMCO	Albion	Albion & *SEMCO	Nordson EFD, *SEMCO, & Fisnar	Fishman, PVA, Nordson EFD
	None F Syst		B System (35cc & 45cc Sulzer)	B26 (Albion)	846-1E (Albion)	846-1A (Albion)	Performus III, Ultra 2400 Series, Ultra 1400 Series, & Ultra 870 Series (Nordson EFD)	TBD
Equipment Description							DSP501N & JB1113N (Fisnar)	TBD
			F System (200cc & 250cc Sulzer)	850 (*SEMCO)	TBD	250-A & 550	250-B (*SEMCO)	TBD
						(*SEMCO)	TBD	TBD
Comments	For Stenciling use a Die-Cut Mylar that is thicker than the minimum bond-line thickness	Hand held syringe	Manual dispense system with appropriate mix-ratio (material dependent)	Manual caulk- ing gun may dispense faster depending on the operator	Battery powered caulking gun may dispense faster depending on the operator	Air powered caulking gun may dispense faster depending on the operator	Table top unit, that can handle high viscosity compounds and regulates pressure and time. Flow rate is measured at 90psi directly out of the cartridge	Table top unit, that can handle high viscosity compounds and regulates displace- ment.

NOTE: Chomerics does not officially endorse any of the equipment above or supply it. For equipment technical support please contact the vendors listed.

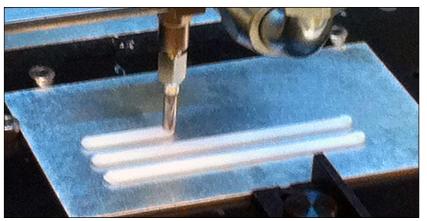
^{*} SEMCO is a trademark of PPG Aerospace.

Equipment Types

Table 2: High Volume Dispensing Methods

		High Volume Dispensing Module				
	Bench Top Dispensing Systems	Cartridge Pumping and Robotic Dispense System	Pail Pump and Transport System			
Features & Benefits	Repeatable Shot Size and Shape, Program- mable XYZ Direction and Speed, Continu- ous Dispensing, Low Capital Investments	Fastest Cycle Type, Lowest Material Cost, Visual Inspection Systems, Fully Automated System, Best Control and Yield, Continuous Dispensing, Repeat- ability In Shot Size & Shape	Fastest Cycle Type, Lowest Material Cost, Visual Inspection Systems, Fully Automated System, Best Control and Yield, Continuous Dispensing, Repeatabil- ity In Shot Size & Shape, Multi-process step			
Operator Responsibility (Post Programing and General System)	Seating application under dispensing head	Purging dispense system between materials	Purging dispense system between materials			
Variability in Dispensed Part	None	None	None			
Chomerics Material Package Description	30-360cc Cartridge	6oz. (180cc), 8oz.(240cc), 12oz. (360cc), 20oz(610cc), & 32oz.(953cc) Cartridge	1-5 Gallon Pail			
Material Cost	LARGER BULK CONTAINERS ARE THE MOST ECONOMICAL PRICE PER CC					
Common Equipment Vendors	Camelot, Fisnar and Nordson EFD	Please Contact Local Territory Sales Manager Or Applications EngineeringFor High Volume Equipment Recomendations				
Equipment Description	F4200N (Fisnar)					
Equipment Description	I+J4100LF & DSP501A-LF (Fisnar)					
Comments	Programmable table top unit that is compatible with available packaging.	Pump dispenses directly out of the cartridge to dispensing value. Gear pumps and soft metal component pumps are not recommended. Short hoses with minimum ID, and limited bends and elbows are ideal to minimize shear.	Pump dispenses directly out of the pail to dispensing value. Conductive filler is abrasive. Gear pumps and soft metal component pumps are not recommended. Short hoses with minimum ID, and limited bends and elbows are ideal to minimize shear.			

NOTE: Chomerics does not officially endorse any of the equipment above or supply it. For equipment technical support please contact the



Technical Parameter

High Volume Equipment Considerations

High volume applications will require an appropriate dispensing system designed for larger package formats (i.e. SEMCO cartridges and pails). The proper equipment choice will be a function of geometry, throughput requirements, material Material type, and package. selection should be defined prior to selecting equipment to optimize the material performance and the longterm equipment maintenance. Most thermal materials contain high concentrations of ceramic filler to maximize the thermal performance, so they dispense differently than an unfilled polymer or grease.

GELs are truly unique materials, in that they are fully cured thermally conductive polymers that can be extruded. The advantage in using thermally conductive GELs is that they do not require any mixing or curing once they are dispensed. The key to dispensing a GEL in high volume is to maintain the material's integrity as it is being dispensed by minimizing the tubing lengths, maximizing the tubing's inside diameter, and reducing the number of elbows (i.e. bends or angular connections). Using a larger-orifice needle tip reduces the amount of shear the on the material (please refer to "Technical Parameters: Dispense Patterns & Process Considerations").

To successfully dispense GELs with minimal impact to physical properties, simple ram/piston pump systems with adequate force capability have proven Reciprocating most reliable. pumps, gear pumps, or other complex pumping designs impart excessive stress on the material. Pump systems that have high a degree of mechanical interaction with the material may increase maintenance needs due to the high concentrations of thermally conductive and sometimes abrasive fillers.

The valve that dispenses, or controls, the amount of material dispensed needs to be constructed to endure a maximum number of cycles. The most successful valves use a progressive cavity (i.e. displacement type option), and are geometrically simple. There are other features that are available in valves, including "snuff-back design" that can aid in the termination of the

dispensed bead, as well as builtin shot-size calibration/control.

Two-Component CIP (Cure-In-Place) materials require similar equipment design as GELs, but must also take into consideration mixing, metering, and curing. The CIP materials also require maximizing the tubing's inside diameter while minimizing tube lengths and number of elbows used (i.e. bends or angular connections). Mixing must be done carefully, without introducing any air, or be done under vacuum (so as not to create air voids). The easiest method of blending the two components is to use a static mixer. Metering, of wear-resistant components or ensuring the proper amount of each side blended, must be accurate to maintain the materials end properties.

Technical Parameters

Part Considerations

Once a TIM has been selected and the dispensing system has been defined, the next step is to analyze the part(s) to ensure that the correct volume of TIM is delivered to the required location in the correct shape.

As a starting point, use the following tasks to guide part analysis:

- Define number of target locations
- Determine whether TIM will be dispensed on the component side or heat sink side
- Consider all operations that occur post dispense and prior to final assembly that may affect form, placement, cleanliness, position, etc.
- Define dispense technique (this is a function of TIM type, geometry, etc). Examples include screening, potting, injection, and direct dispense to target

Figure 3: Multiple Location Casting

- Consider any physical obstructions that the dispense head will have to navigate around
- Calculate shot size per dispense location (function of the area of coverage, gap(s), and shape
- Assess the surfaces that will be in contact with the TIM: composition, roughness, and geometric features
- Address cleanliness for proper wetting and thermal performance
- Assess the special conditions that the TIM will be subject to (see section on Special Considerations):
 - Orientation, Vibration, Mechanical Stresses, and Temperature Extremes
 - Cure conditions when high temperature cure is required for a CIP, with low melt materials in proximity
 - Transporting of part to multiple locations i.e.
 Packaging, climate, protection, etc

Figure 4: Multiple Location Casting

Table 3: A surface roughness of N8 or rougher is recommended

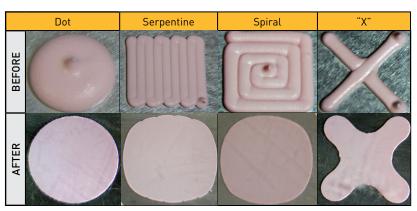
Surface Ro	Surface Roughness Values					
Grade Number	Micro- meter	Micro inches				
N8	3.2	125				
N9	6.3	250				

Technical Parameters

Dispense Patterns & Process Considerations

To maximize thermal performance, the TIM must contact entire target area on both the component and heat sink surfaces without air entrapment. In order to achieve this, a proper dispense pattern is critical.

Taking part considerations into account (as discussed on the previous page), the next process design task is to specify the dispensed material pattern. Consider the following parameters:


- Volume required: a function of the nominal gap, tolerances, and geometries
- Shape of bead required to "wet out" the entire targeted area
- Shot location and registration
- Elimination of potential trapped air

Also consider a means of process verification:

- Visual inspection (if possible)
- Automatic/Integrated optical verification
- Functional tests
 (measurement of critical junction temperatures as a function of power)

To achieve repeatable shot volume:

 If repeatability is inadequate, consider the effect of the dispense tip, the effect of shear and time, the effect of cure (if it is a CIP material), and the effect of adding a precision valve (if necessary)

Figure 5: Dispensing Patterns A simple dot like the first pattern provides adequate coverage, shortest cycle time, and least chance of introducing air into the TIM. The more complex the profile, the greater the probability for introducing air (ex: Serpentine and Spiral).

- Always establish a minimum volume that is required to cover the entire range of gap volumes
- Build in a shot-size
 calibration process to verify
 that dispense rates are not
 variable adjust dispense
 pressure or shot times
 as a function of shot-size
 measurements

To optimize the shape of the dispensed material:

- Determine a pattern (dot, line, or serpentine) that will "wet" the entire target, and that offers a bead height sufficient to fully contact the opposing target surface without air voids
- Consider the path of egress to minimize any possible airentrapment
- Optimization of pattern can reduce material consumption while ensuring the functional gap is filled

To properly locate (or register) the dispensed material to the part:

- Start with proper fixturing and adjustment scheme to ensure registration between dispense head and part
- Build appropriate verification checks into the process

To optimize cycle time:

- Adjust dispense pressure (increase), needle orifice diameter (increase), and hose lengths/angles/flow obstructions of the delivery system (decrease)
- Beware of trade-offs
 associated with improvement
 of flow and cycle time,
 such as effects of shear on
 the material, sag/slump
 behavior, effects on shape of
 pattern, and filler separation
 in delivery system (damming)

Technical Parameters

Surface Wetting

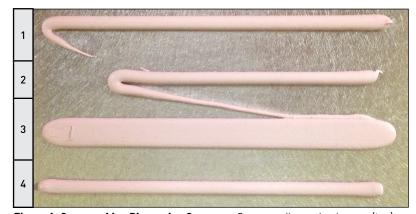
The surface of the part should be free from lint, processing oils. or general FOD (foreign object debris). If there is a concern with cleanliness, the surface can cleaned with a mild solvent, such as isopropyl alcohol (IPA), or any suitable surface cleaner.

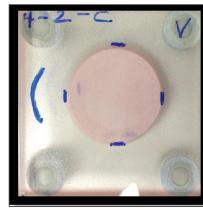
The objective is to have the dispense tip as low as possible to achieve sufficient wetting and bead initiation/termination (see figure 5). This may require some trials to determine the appropriate combination of dispense tip diameter, height, and corresponding speed and service pressure.

each bead shape and volume (i.e. component, heat spreader) to properly wet and fill the gap between the two surfaces. As an In cases where rework is initial recommendation, consider required, first remove the bulk of a bead height of 2X to 3X the the material using a soft tool that nominal gap to promote wetting. will not damage the substrate

As a general rule, increased depressor). Apply a mild surface surface roughness will increase cleaner such as IPA to remove the surface area available for wetting. In vertical applications, the increased surface roughness will provide an increased resistance to slide (for any additional technical support regarding GEL30 in a vertical gap please contact Parker Chomerics Applications Group).

Generally, increasing the shot size, contact area, and surface roughness will aid in slide resistance of the material.




Figure 6: Common Line Dispensing Concerns Common dispensing issues; (top) system did not have a program for bead termination, (middle top) needle was too high and there was no bead termination programed, (middle bottom) needle too low, (bottom) correct height with bead termination

staging time (prior to further processing) will enhance wetting The first consideration is to target of the TIM to the target surfaces

(i.e. a rubber spatula, tonque

In some cases, a degree of remaining residue and clean the surface, then reapply the TIM.

> When using a CIP material, it may be more difficult to peel the material off the components once it is cured. The best way to remove the material is to abrade the surface with a soft tool (wooden stick or Q-tip) and then clean the surface with IPA (toluene may work better).

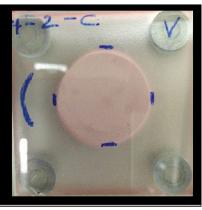


Figure 7: Reliability Reports The images above show one of the 18 trials that were performed on GEL30 in a vertical orientation tested under several different surface roughnesses, gaps, and surface areas. The test fixtures were subject to temperature shock and random vibration. Contact Parker Chomerics Applications for report. [Image to the left is before and Image to the right is after the treatment)

Technical Parameters

Special Material Considerations

THERM-A-GAP GELs are fully material should be reapplied. cured elastomers that are loosely cross-linked and can easily be extruded. Excessive shear force from complex dispense geometries and high pressure can affect the material structure and affect the rheology of the material. It is important to minimize the degree of shear imparted on the GELs by using a needle with a larger orifice, larger inner diameter tubing, fewer elbows, and lower pressure. Due to this sensitivity to shear, the GELs are designed to be dispensed out of the packaging only once. Repackaging would change the mechanical properties of the

For reworking, it is recommended to use a cloth, lint free towel, or spatula to remove the GEL from the substrate. The material should be removed, and fresh

material.

THERM-A-FORM CIP (Cure-In-Place) Compounds are designed to be dispensed and cured directly into the application. The surfaces that the mixed compounds are applied to should be free from any cure-inhibiting contaminants, especially those containing; nitrogen, sulfur, tin, phosphorus, and latex. It is important to consider the cure times and temperatures required to fully cure the material and their effect on processing, cycle times, and substrates.

Generally, for the thermal cure materials, every 10°C increase in cure temperature will reduce the cycle to half of the original time (keeping in mind the exposure limits of other components). Another important consideration for these systems is pot-life.

Once catalyzed, there is a finite amount of time that material will flow adequately. Proper measures must be addressed to ensure shot size control. Static mixing nozzles are provided with all standard two-component THERM-A-FORM products. It is important to use the appropriate static mixing nozzle as they differ with mix ratio (i.e. 1:1 and 10:1). Components encapsulated by a Therm-A-Form compound can be removed by notching and peeling away the cured compound from the components.

Other thermally conductive dispensable materials such as thermal greases were the historical thermal solution. These materials were designed to achieve minimum bond-line. The typical application is through stenciling or screen printing. It is important in both of these methods to ensure that the screen or stencil is a minimum of 3X thicker than the maximum particle size in the compound. If the holes of the screen are too small or the stencil is too thin, it may filter out some of the conductive particles in the compounds. Due to the non-crosslinked nature of these materials, they may have a tendency to separate in the package. It is best practice to always mix the material prior to usage. For reworking, the material can be removed with a simple cleaning solvent prior to reapplying.

Ordering Information

Table 4: Standard Packages 6W-XX-YYYYYY-ZZZZ

W		XX	YYYYY	ZZZZ			
0ELS		00		0010 = 10cc Syringe with Plunger			
	5 = Standard Packaging		THERM-A-GAP GEL	0030 = 30cc Taper Tip Cartridge			
			T630, T630G, T635, T636, GEL8010,	0300 = 300cc Aluminum Cartridge (Caulking Style)			
			GEL30 & GEL30G, GEL45, TC50	3790 = 1 Gallon Pail (3790cc)			
				ZZZZ = 5 Gallon Pail (Max 50lbs)			
	9 = Custom Packaging	11	Custom Part Number	THERM-A-GAP GEL Material Code T630(G), T635, T636, T652, GEL8010, GEL30, GEL45, TC50			
THERM-A-FORM	5 = Standard Packaging	00	THERM-A-FORM (10:1)	0035 = 35cc Kit			
			T642	0250 = 250cc Kit			
			THERM-A-FORM (1:1)	0045 = 45cc Kit			
			T644, T646,T647, CIP35	0200 = 200cc Kit			
		01	THERM-A-FORM	0000 = 2.5oz Tube			
			Compound 1641 & Primer 1086	0000 = 12oz Cartridge			
		00	THERM-A-FORM Compound 1642 & Primer 1087	0000 = 8oz. Jar			
SE SE		00		0080 = 8oz. Jar (80cc)			
GREASE	5 = Standard Packaging		Thermal Grease T650, T660, T670	0160 = 8oz. Jar (160cc)			
GF			,	3790 = 1 Gallon Pail			

Table 5: Packaging Options							
	Α	Primer Vial	Н	45cc Cartridge Kit (1:1) w/ Static Mixe	0	8 oz. Plastic Jar	
	В	1.4cc Jar	Ī	55cc Optimum Cartridge	Р	12 oz. SEMCO	
	С	2.5cc Tube	J	200cc Cartridge Kit (1:1)	Q	20 oz. SEMCO	
	D 10cc Syringe w/ Cap E 30cc Taper Tip Cartridge		K	250cc Cartridge Kit (10:1) w/ Static Mix	R	32oz SEMCO	
			L	300cc Aluminum Caulking Tube (13oz)	S	1 Gallon Pail	
	F	30cc Optimum Cartridge/Tip	М	6oz. SEMCO	Т	5 Gallon Pail	
	G	35cc Cartridge Kit (10:1) w/ Static Mixer	N	8 oz. SEMCO			

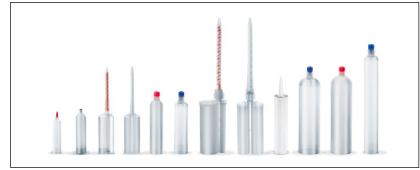


Figure 8: Typical Packaging Options

Figure 9: Typical High Volume Packaging Options

Customer Responsibility and Offer of Sale Statement

CUSTOMER RESPONSIBILITY

WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries, and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring

that all performance, endurance, maintenance, safety, and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

OFFER OF SALE

The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its subsidiaries or its authorized distributors. This offer and its acceptance are governed by the provisions stated in the detailed "Offer of Sale" elsewhere in this

document or available at www.parker.com.

Chomerics Worldwide

Corporate Facilities

To Place an Order Please Contact a Customer Service Representative at the Following Locations

North America

Global Division Headquarters 77 Dragon Court Woburn, MA Phone +1 781-935-4850 Fax +781-933-4318

chomailbox@parker.com

Product Disclosure (ROHS/REACH, Material Declarations, SDS)

choproductdisclosure@parker.com

Europe

Parker Hannifin Ltd

Chomerics Division Europe Unit 6, Century Point Halifax Road High Wycombe Bucks HP12 3SL UK Phone +44 1494 455400 Fax +44 14944 55466

chomerics_europe@parker.com

Asia Pacific

Parker Hannifin

Chomerics Shanghai

280 Yunqiao Road, Jin Qiao Export Processing Zone, Shanghai 201206, China

Phone +86 21 2899 5000 Fax +86 21 2899 5146

chomerics_ap@parker.com

Parker Hannifin

Chomerics Shenzhen

No.5 Bldg Jinrongda Technological Park Gangtou Village, Bantian Longgang District Shenzhen, 518122, China Phone +86 755 8974 8558 Fax +86 755 8974 8560 chomerics_ap@parker.com Parker Hannifin

Chomerics Kula Lumpur

Lot 15, Jalan Gudang 16/9 Section 16, Shah Alam

Industrial Estate, 40200 Shah Alam

Selangor, Malaysia Phone +603 5510 9188 Fax +603 5512 6988

chomerics_ap@parker.com

Penang, Malaysia

No.3, Puncak Perusahaan 1, 13600

Prai, Penang, Malaysia Phone +604 398329 Fax +604 3983299

chomerics_ap@parker.com

Parker Hannifin India Private Limited

Chomerics Division,

Plot No. 41/2, 8th AvenueDTA, Anjur Village, Mahindra World City, Chengalpattu, Tamilnadu - 603 004, India

Phone +91 44 67132333 Phone +91 44 67132045 chomerics_ap@parker.com

Manufacturing Facilities

Woburn, MA; Hudson, NH; Cranford, NJ; Millville, NJ; Fairport, NY; Monterrey, Mexico; Grantham, UK; High Wycombe, UK; Sadska, Czech Republic; Shanghai, PRC; Shenzhen, PRC; Penang, Malaysia; Kuala Lumpur, Malaysia; Chennai, India.

www.parker.com/chomerics

© 2018 Parker Hannifin Corporation. All rights reserved. CHOMERICS is a registered trademark of Parker Hannifin Corporation.

Literature Number: MB 1006 EN August 2018

